skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohammadi, Neda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available January 7, 2026
  4. Free, publicly-accessible full text available December 1, 2025
  5. Our relationship with technology is constantly evolving, and how we use technology in disasters has evolved even faster. Understanding how to utilize human interactions with technology and the limitations of those interactions will be a crucial building block to contextualizing crisis data. The impact of geographic scale on behavioral change analyses is an unexplored facet of our ability to identify relative severities of crisis situations, magnitudes of localized crises, and total durations of disaster impacts. Within this paper, we aggregate Twitter and hurricane damage data across a wide range of geographic scales and assess the impact of increasing scale on both the recognition of extreme behaviors and the correlation between activity and damage. The power-law relationships identified between many of these variables indicate a direct, definable scalar dependence of social media aggregation analyses, and these relationships can be used to inform more intelligent, equitable, and actionable social media usage in emergency response. 
    more » « less